Charging by Induction Simulation
For more information about this simulation go to: Simulation Manual: Charging by Induction.
للمزيد من المعلومات عن هذه المحاكاة إذهب إلى: دليل المحاكاة: الشحن بالتحريض.
For more information about this simulation go to: Simulation Manual: Charging by Induction.
للمزيد من المعلومات عن هذه المحاكاة إذهب إلى: دليل المحاكاة: الشحن بالتحريض.
A new simulation, that simulates the free fall of an object (ball). This simulation gives the ability to measure the acceleration of gravity by taking successive shots of the falling object with recording the time of each shot and measuring the coordinate y for each shot. It also enables us to check the famous free fall equation:
y = (1/2) gt²
This time I have updated Virtual Oscilloscope so it is now mobile-friendly. Long-press any button, knob, or slider and it will scale up to become comfortable enough for your touch so you can control it comfortably using your mobile device.
I also optimized the code to perform smoothly on mobile devices.
If you or your student or child are having difficulties in learning long division, then you will find this simulation comprehensive and instructional, that guides the learner through the process step by step. This application is for long division with float quotient. Another application on long division with remainder is also available in the simulations section.
In this game, you must employ the projectile equations to win.
The game consists of three levels, each of which must be completed by scoring at least 8 out of a possible 10 tries. In the first level, you must hit a ground target that shifts position after each attempt. In the second level, you will need to alter the ball’s trajectory to pass over a wall. In the third level, the target flies and changes position both horizontally and vertically in each trial.
The paper: Using a web-based and stand-alone oscilloscope for physics experiment during Covid-19 pandemic, Mahizah Ismail et al (2023), Phys. Educ. 58 015006, is based on the Virtual Oscilloscope simulation. This paper was authored by Mahizah Ismail, Farid Minawi, Wan Zul Adli Wan Mokhtar, Noraihan L Abdul Rashid and Ahmad K Ariffin.
The article DOI: https://iopscience.iop.org/article/10.1088/1361-6552/ac95eb
With this comprehensive and realistic-like photoelectric effect experiment simulation, you will be able to illustrate the following:
The variations of the photocurrent versus potential.
The variations of the photocurrent versus light intensity.
The variation of the kinetic energy of the ejected electrons versus the incident light frequency.
It comes with a graph where you can trace each type of variation as you vary the parameters of the experiment.
Plus, you can experiment and discover more with this simulation.
Wonderful simuations.